Gunn Diode Oscillator Minutes

David Headland

2003-11-04 09:00

Attendance

- Fourth year students
 - DP Headland [Navigator going, driver return]
 - AJ Nelms [Driver going, navigator return]
 - RE Irwin
 - R Wan
 - JM Higginbotham
 - MP Gaskill
- UMIST staff
 - WS Truscott
 - R Sloan
- e2v Technologies staff
 - N Priestley
 - P Norton
 - Martin

Introduction from e2v

- The company was part of GEC.
- This split half into BAE Systems and half into Marconi.
- This company was sold to venture capitalists 3I.
- 3I don't dictate markets and technologies as Marconi did, this is left to e2v to decide upon.
- e2v can buy and sell businesses within the company.
- The Lincoln site is almost entirely dedicated to microwave products.
- 94 GHz radars developed there are to be used on the Brimstone missile system.
- A lot of the business is geared towards defence.
- The company started with free electron technology.
- Nowadays the main business concentrates on solid state technology.
- Power output is an advantage for free electron devices.

Our presentation to e2v

- The presentation was carried out as practised.
- Notes were taken by e2v staff during the presentation.
- A laugh was raised when it was suggested that "planar circuits are quite simple".
- A planar circuit in a heatsink was shown when we mentioned it.
- Reasoning for wanting an 87 GHz device was asked for. The response was that three would be combined to form a 260 GHz oscillator.

Comments by e2v

- GaAs vs InP
 - There is probably only one group of people in the world manufacturing InP Gunn diodes, based in France.
 - A company in the USA has many.
 - e2v will provide contact details for the USA company who may be willing to send some free samples.
 - InP is very temperature dependant and brittle.
 - GaAs will require operation in the second harmonic mode for our frequency.
 - The current spike in Gunn diodes is very short so produces many harmonics.
 - The second and subsequent harmonics can then easily be extracted.
- Waveguide vs planar
 - Suggested giving up on the planar approach.
 - There would be too many problems anticipated.
 - Planar circuits have a very bad Q value.
- Waveguide manufacture
 - A small waveguide was shown to the group.
 - Waveguides can be mass machined to the required tolerances.
 - Waveguide 27 will be required for us $(2.54 \times 1.27 \text{ mm})$.
 - Working under a microscope will be required.

Questions to e2v

- What would they use for simulations?
 - Momentum.
 - HFSS.

- Can you supply Gunn diodes?
 - Yes.
 - Packaged ready for waveguides (F8).
- Can they produce resonant caps?
 - Yes.
 - Design is very empirical.
 - Simulation will be very difficult.
 - 94 GHz caps have a diameter of approximately 2 mm.
 - 77 GHz caps have a diameter of approximately $2.5\,\mathrm{mm}.$
- Will heat be a problem in waveguide?
 - Probably not.
 - It certainly won't be a major issue in a prototype.
- What tests would e2v perform whilst developing a device?
 - Power measurements.
 - Spectrum analysis.
 - Voltage vs frequency relationship (should be positive).
 - Phase noise (should be approximately 75–80 dB/Hz at 100 kHz offset).
 - * This is the peak sharpness on the spectrum analyser.
 - * We may have difficulty measuring it.
 - For this project, only measure thermal effects as an academic exercise.
- Will e2v machine cavities?
 - Yes.
 - They will require a mechanical drawing.
 - The machinist is flexible, so perfect drawings are not completely essential.
 - Aluminium or brass can be used.

- Waveguides do not need to be gold plated.
- Do you have any good device models?
 - Not for waveguide simulations.
 - Different engineering approaches are apparent within the company.
 - There are no models of the Gunn diode that work correctly.
 - Simulation may be a good idea for the multiple Gunn diode approach.
 - e2v will help us to get started.
 - Power combining in the second harmonic will be covering completely new ground.
- Do you have any general practical advice?
 - They will write a target specification.
 - This will attempt to reduce the number of unknown in the project to make it more achievable.
 - The fundamental issues should be sorted out at the start.
 - Allow time for hardware to be built later on in the project.

Points made by e2v

- Attention must be paid to the biasing circuit PCB as it is key to the operation of waveguide Gunn diode oscillators.
- Don't just assume this is generally metal work burrs can cause major problems, and joints must be very tight.
- A tour of the factory was given.
- A decision should be made during the planning stage on the waveguide type : a single block, clamped or soldered waveguide.
- Philip Norton's email address was obtained: philip.norton@e2vtechnologies.com
- e2v will provide a list of recommended papers.
- WS Truscott and R Sloan discussed test equipment.
- Advice to get hands on experience was reiterated by e2v.

Next meeting

Time Tuesday, 11 November 2003, 10:00

Place D floor coffee room

Meeting adjourned, 18:30.